SPERM ABNORMALITY CLASSIFICATION USING MULTI-PURPOSE IMAGE EMBEDDING AND CLASSICAL MACHINE LEARNING
Abstract
Since sperm cells have big impact for human welfare in terms of reproduction, there are many studies have been done. In this case, we are attracted to enrich the method in determining the morphological properties of them using machine learning. Most study about it is done using 2-steps action that are feature extraction which is continued by classification. In our work, we aimed to lower the complexity by using image embedding as a general-purpose feature extractor that requires no training. For feature extraction using image, it is found that RGB has better performance compared to grayscale if we want to use Support Vector Machine (SVM). Meanwhile, when a comparation is done between SVM, random forest, Multi-Layer Perceptron (MLP), Naïve Bayes, and k-Nearest Neighbour (kNN) for classification process, MLP shows the best performance among them which is around 85%. Moreover, our proposed method has low complexity indicated by the training time around one and a quarter minute s for the most accurate method, compared to hours of training time in similar methods.
Full Text:
PDFReferences
J. Auger, P. Jouannet, and F. Eustache, “Another look at human sperm morphology,” Hum. Reprod., vol. 31, no. 1, pp. 10–23, Jan. 2016, doi: 10.1093/humrep/dev251.
R. Menkveld, C. A. Holleboom, and J. P. Rhemrev, “Measurement and significance of sperm morphology,” Asian J. Androl., vol. 13, no. 1, pp. 59–68, Jan. 2011, doi: 10.1038/aja.2010.67.
T. Kruger and K. Coetzee, “The role of sperm morphology in assisted reproduction,” Hum. Reprod. Update, vol. 5, no. 2, pp. 172–178, Mar. 1999, doi: 10.1093/humupd/5.2.172.
G. Cito et al., “Sperm morphology: What implications on the assisted reproductive outcomes?,” Andrology, vol. 8, no. 6, pp. 1867–1874, Nov. 2020, doi: 10.1111/andr.12883.
S. Oehninger and T. F. Kruger, “Sperm morphology and its disorders in the context of infertility,” FS Rev., vol. 2, no. 1, pp. 75–92, Jan. 2021, doi: 10.1016/j.xfnr.2020.09.002.
World Health Organization, WHO laboratory manual for the examination and processing of human semen. Geneva: World Health Organization, 2021.
P. Matson, M. Kitson, and E. Zuvela, “Human sperm morphology assessment since 2010: experience of an Australian external quality assurance programme,” Reprod. Biomed. Online, vol. 44, no. 2, pp. 340–348, Feb. 2022, doi: 10.1016/j.rbmo.2021.11.005.
E. Filimberti et al., “High variability in results of semen analysis in andrology laboratories in Tuscany (Italy): the experience of an external quality control (EQC) programme,” Andrology, vol. 1, no. 3, pp. 401–407, 2013, doi: 10.1111/j.2047-2927.2012.00042.x.
U. Punjabi, C. Wyns, A. Mahmoud, K. Vernelen, B. China, and G. Verheyen, “Fifteen years of Belgian experience with external quality assessment of semen analysis,” Andrology, vol. 4, no. 6, pp. 1084–1093, 2016, doi: 10.1111/andr.12230.
C. Álvarez et al., “External quality control program for semen analysis: Spanish experience,” J. Assist. Reprod. Genet., vol. 22, no. 11, pp. 379–387, Dec. 2005, doi: 10.1007/s10815-005-7461-2.
R. Finelli, K. Leisegang, S. Tumallapalli, R. Henkel, and A. Agarwal, “The validity and reliability of computer-aided semen analyzers in performing semen analysis: a systematic review,” Transl. Androl. Urol., vol. 10, no. 7, Art. no. 7, Jul. 2021, doi: 10.21037/tau-21-276.
R. P. Amann and D. F. Katz, “Andrology Lab Corner: Reflections on CASA After 25 Years,” J. Androl., vol. 25, no. 3, pp. 317–325, 2004, doi: 10.1002/j.1939-4640.2004.tb02793.x.
R. P. Amann and D. Waberski, “Computer-assisted sperm analysis (CASA): Capabilities and potential developments,” Theriogenology, vol. 81, no. 1, pp. 5-17.e3, Jan. 2014, doi: 10.1016/j.theriogenology.2013.09.004.
M. Yüzkat, H. O. Ilhan, and N. Aydin, “Multi-model CNN fusion for sperm morphology analysis,” Comput. Biol. Med., vol. 137, p. 104790, Oct. 2021, doi: 10.1016/j.compbiomed.2021.104790.
L. Spencer, J. Fernando, F. Akbaridoust, K. Ackermann, and R. Nosrati, “Ensembled Deep Learning for the Classification of Human Sperm Head Morphology,” Adv. Intell. Syst., vol. 4, no. 10, p. 2200111, 2022, doi: 10.1002/aisy.202200111.
H. Yang et al., “Multidimensional morphological analysis of live sperm based on multiple-target tracking,” Comput. Struct. Biotechnol. J., vol. 24, pp. 176–184, Dec. 2024, doi: 10.1016/j.csbj.2024.02.025.
M. E. Kandel et al., “Reproductive outcomes predicted by phase imaging with computational specificity of spermatozoon ultrastructure,” Proc. Natl. Acad. Sci., vol. 117, no. 31, pp. 18302–18309, Aug. 2020, doi: 10.1073/pnas.2001754117.
S. Javadi and S. A. Mirroshandel, “A novel deep learning method for automatic assessment of human sperm images,” Comput. Biol. Med., vol. 109, pp. 182–194, Jun. 2019, doi: 10.1016/j.compbiomed.2019.04.030.
J. Riordon, C. McCallum, and D. Sinton, “Deep learning for the classification of human sperm,” Comput. Biol. Med., vol. 111, p. 103342, Aug. 2019, doi: 10.1016/j.compbiomed.2019.103342.
R. G. Tiwari, A. Misra, and N. Ujjwal, “Image Embedding and Classification using Pre-Trained Deep Learning Architectures,” in 2022 8th International Conference on Signal Processing and Communication (ICSC), Dec. 2022, pp. 125–130. doi: 10.1109/ICSC56524.2022.10009560.
D. Kiela and L. Bottou, “Learning Image Embeddings using Convolutional Neural Networks for Improved Multi-Modal Semantics,” in Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar: Association for Computational Linguistics, 2014, pp. 36–45. doi: 10.3115/v1/D14-1005.
J. Kim and Y. Kang, “Automatic Classification of Photos by Tourist Attractions Using Deep Learning Model and Image Feature Vector Clustering,” ISPRS Int. J. Geo-Inf., vol. 11, no. 4, Art. no. 4, Apr. 2022, doi: 10.3390/ijgi11040245.
Y. Gu, Y. Xu, X. Huang, J. Yang, W. Xue, and G.-Z. Yang, “Toward Robust Histology-Prior Embedding for Endomicroscopy Image Classification,” IEEE Trans. Med. Imaging, vol. 41, no. 11, pp. 3242–3252, Nov. 2022, doi: 10.1109/TMI.2022.3180340.
Y. Xu, W. Guo, Z. Zhang, and W. Yu, “Multiple Embeddings Contrastive Pretraining for Remote Sensing Image Classification,” IEEE Geosci. Remote Sens. Lett., vol. 19, pp. 1–5, 2022, doi: 10.1109/LGRS.2022.3185729.
Z. Ralte and I. Kar, Learn Python Generative AI: Journey from autoencoders to transformers to large language models (English Edition). BPB Publications, 2024.
Z. Hu, Q. Zhang, and M. He, Advances in Artificial Systems for Logistics Engineering III. Springer Nature, 2023.
F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size,” Nov. 04, 2016, arXiv: arXiv:1602.07360. doi: 10.48550/arXiv.1602.07360.
“GitHub - alyato/CNN-models-comparison: Comparison of famous convolutional neural network models,” GitHub. Accessed: Oct. 03, 2024. [Online]. Available: https://github.com/alyato/CNN-models-comparison
S. Salcedo-Sanz, J. L. Rojo-Álvarez, M. Martínez-Ramón, and G. Camps-Valls, “Support vector machines in engineering: an overview,” WIREs Data Min. Knowl. Discov., vol. 4, no. 3, pp. 234–267, 2014, doi: 10.1002/widm.1125.
M. Awad and R. Khanna, “Support Vector Machines for Classification,” in Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers, M. Awad and R. Khanna, Eds., Berkeley, CA: Apress, 2015, pp. 39–66. doi: 10.1007/978-1-4302-5990-9_3.
M. Pal, “Random forest classifier for remote sensing classification,” Int. J. Remote Sens., vol. 26, no. 1, pp. 217–222, Jan. 2005, doi: 10.1080/01431160412331269698.
T. Hastie, R. Tibshirani, J. Friedman, T. Hastie, R. Tibshirani, and J. Friedman, “Random forests,” Elem. Stat. Learn. Data Min. Inference Predict., pp. 587–604, 2009.
H. Kamel, D. Abdulah, and J. M. Al-Tuwaijari, “Cancer Classification Using Gaussian Naive Bayes Algorithm,” in 2019 International Engineering Conference (IEC), Jun. 2019, pp. 165–170. doi: 10.1109/IEC47844.2019.8950650.
S. Adinugroho and Y. A. Sari, Implementasi Data Mining Menggunakan Weka. Universitas Brawijaya Press, 2018.
F. A. Breve, M. P. Ponti-Junior, and N. D. A. Mascarenhas, “Multilayer Perceptron Classifier Combination for Identification of Materials on Noisy Soil Science Multispectral Images,” in XX Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI 2007), Oct. 2007, pp. 239–244. doi: 10.1109/SIBGRAPI.2007.10.
S. Yadav and S. Shukla, “Analysis of k-Fold Cross-Validation over Hold-Out Validation on Colossal Datasets for Quality Classification,” in 2016 IEEE 6th International Conference on Advanced Computing (IACC), Feb. 2016, pp. 78–83. doi: 10.1109/IACC.2016.25.
C. Sammut and G. I. Webb, Encyclopedia of Machine Learning. Springer Science & Business Media, 2011.
H. O. Ilhan, I. O. Sigirci, G. Serbes, and N. Aydin, “A fully automated hybrid human sperm detection and classification system based on mobile-net and the performance comparison with conventional methods,” Med. Biol. Eng. Comput., vol. 58, no. 5, pp. 1047–1068, May 2020, doi: 10.1007/s11517-019-02101-y.
J. Demšar et al., “Orange: Data Mining Toolbox in Python,” J. Mach. Learn. Res., vol. 14, pp. 2349–2353, 2013.
H. O. Ilhan, G. Serbes, and N. Aydin, “Automated sperm morphology analysis approach using a directional masking technique,” Comput. Biol. Med., vol. 122, p. 103845, Jul. 2020, doi: 10.1016/j.compbiomed.2020.103845.
DOI: https://doi.org/10.33387/jiko.v7i3.8938
Refbacks
- There are currently no refbacks.