COMBINATION OF MULTI-VIEW LEARNING AND DEEP REINFORCEMENT LEARNING TO IMPROVE WEBSITE PHISING DETECTION

Muhamad Hasbia, Wina Witanti, Gunawan Abdillah

Abstract


Phishing is one of the most common and dangerous forms of cyberattacks, where perpetrators attempt to obtain sensitive information by masquerading as trustworthy entities. Traditional detection methods often fail to anticipate new attacks due to the dynamic nature of phishing. This research proposes an adaptive phishing detection system that combines Multi-Kernel Learning (MKL) and Deep Q-Network (DQN) approaches. MKL is utilized to integrate features from URL structure, domain metadata, and webpage content into a rich multi-view representation, while DQN enhances the model's adaptability through a reward-based learning mechanism. This combination was chosen because MKL effectively captures feature variations from different sources, while DQN excels at handling rapidly changing attack patterns. The dataset consists of 11,056 entries with 32 features, divided in an 80:20 ratio for training and testing. Moreover, evaluation is performed using a 5-Fold Cross Validation method to ensure result stability, and hyperparameter exploration is conducted to obtain the best configuration. Evaluation results show that the system achieves an accuracy of 96.34%, precision of 95.8%, recall of 97.85%, F1-score of 96.73%, and AUC of 0.98. These results demonstrate that the MKL-DQN approach is highly effective in accurately and adaptively detecting phishing

References


A. P. Working Group, "Phishing Activity Trends Report," 2023. [Online]. Available: https://apwg.org/trendsreports/

M. S. F. Purwani, "Analisis peran dan penanggulangan kejahatan siber: Studi kasus spearphishing," Restor. J. Indones. Probat. Parol. Syst., vol. 1, no. 1, pp. 33–45, 2023, doi: 10.59653/restor.v1i1.56.

I. H. R. Hatta et al., Kecerdasan Buatan. Cendikia Mulia Mandiri, 2024.

C. Xu, J. Si, Z. Guan, W. Zhao, Y. Wu, and X. Gao, “Reliable Conflictive Multi-View Learning,” Proc. AAAI Conf. Artif. Intell., vol. 38, no. 14, pp. 16129–16137, 2024, doi: 10.1609/aaai.v38i14.29546.

Y. Wang, W. Ma, H. Xu, Y. Liu, and P. Yin, "A lightweight multi-view learning approach for phishing attack detection using transformer with mixture of experts," Appl. Sci., vol. 13, no. 13, p. 7429, 2023, doi: 10.3390/app13137429.

M. R. Ridho, N. Fajrah, and F. Fifi, "Literatur review: Penerapan deep reinforcement learning dalam business intelligence," J. Desain Dan Anal. Teknol., vol. 3, no. 2, pp. 96–103, 2024, doi: 10.58291/jdat.v3i2.379.

M. A. G. Al Ghifari, B. Hananto, and B. T. Wahyono, "Implementasi ekstensi Google Chrome dalam mendeteksi situs web phishing menggunakan algoritma Random Forest," in Proc. Semnas Mahasiswa Bidang Ilmu Komputer dan Aplikasinya, 2022, pp. 640–649.

R. Rahmadani, A. Rahim, and R. Rudiman, “Analisis Sentimen Ulasan ‘Ojol The Game’ Di Google Play Store Menggunakan Algoritma Naive Bayes Dan Model Ekstraksi Fitur Tf-Idf Untuk Meningkatkan Kualitas Game,” J. Inform. dan Tek. Elektro Terap., vol. 12, no. 3, 2024.

E. N. Yudistira and S. Kom, Deep Learning: Teori, Contoh Perhitungan, dan Implementasi. Deepublish, 2024.

R. Y. Putra and F. T. E. D. I. Cerdas, “Perencanaan Gerakan pada Mobil Otonom di Jalan Raya Menggunakan Quantile Regression Deep Q Network,” Institut Teknologi Sepuluh Nopember, 2021.

Z. A. Dwiyanti and C. Prianto, "Prediksi cuaca kota Jakarta menggunakan metode Random Forest," J. Tekno Insentif, vol. 17, no. 2, pp. 127–137, 2023, doi: 10.36787/jti.v17i2.1201.

R. Fauzan, A. V. Vitianingsih, D. Cahyono, A. L. Maukar, and Y. A. B. Suprio, "Penerapan algoritma klasifikasi pada machine learning untuk deteksi phishing: Application of classification algorithms in machine learning for phishing detection," MALCOM Indonesia. J. Mach. Learn. Comput. Sci., vol. 5, no. 2, pp. 531–540, 2025, doi: 10.33050/malcom.v5i2.4126.

T. Tukino and F. Fifi, "Penerapan Support Vector Machine untuk analisis sentimen pada layanan ojek online,"J. Desain Dan Anal. Teknol., vol. 3, no.2, pp. 104–113, 2024, doi: 10.58291/jdat.v3i2.380.

W. S. Lestari, "Deteksi serangan DDoS menggunakan Q-learning," JATISI J. Tek. Inform. dan Sist. Informasi, vol. 9, no. 1, pp. 648–658, 2022, doi: 10.35957/jatisi.v9i1.772..

D. A. S. Pratama, "Pengembangan kontrol adaptif untuk kendaraan otonom dengan studi kasus pada mobil elektrik berbasis deep reinforcement learning," M.S. thesis, Dept. Electrical Eng., Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia, 2024.

R. Firmansyah and A. Setiawan, "Hybrid deep learning untuk deteksi phishing URL," JIKO J. Inform. Dan Komput., vol. 5, no. 2, pp. 122–131, 2023, doi: 10.33387/jiko.v5i2.6724.




DOI: https://doi.org/10.33387/jiko.v8i2.9811

Refbacks

  • There are currently no refbacks.