A Multimodal Deep Learning Framework for Early Detection of Congenital Heart Disease in Neonates
Sari
Kata Kunci
Teks Lengkap:
PDF ()Referensi
WHO, “Congenital disorders,” https://www.who.int/health-topics/congenital-anomalies#tab=tab_1. Accessed: May 31, 2025. [Online]. Available: https://www.who.int/health-topics/congenital-anomalies#tab=tab_1
J. I. E. Hoffman and S. Kaplan, “The incidence of congenital heart disease,” J Am Coll Cardiol, vol. 39, no. 12, pp. 1890–1900, Jun. 2002, doi: 10.1016/S0735-1097(02)01886-7.
Y. Zhang et al., “Current status and challenges in prenatal and neonatal screening, diagnosis, and management of congenital heart disease in China,” Lancet Child Adolesc Health, vol. 7, no. 7, pp. 479–489, Jul. 2023, doi: 10.1016/S2352-4642(23)00051-2.
S. A. Yoon, W. H. Hong, and H. J. Cho, “Congenital heart disease diagnosed with echocardiogram in newborns with asymptomatic cardiac murmurs: a systematic review,” BMC Pediatr, vol. 20, no. 1, pp. 1–10, Jun. 2020, doi: 10.1186/S12887-020-02212-8/TABLES/6.
D. B. Olawade, N. Aderinto, G. Olatunji, E. Kokori, A. C. David-Olawade, and M. Hadi, “Advancements and applications of Artificial Intelligence in cardiology: Current trends and future prospects,” Journal of Medicine, Surgery, and Public Health, vol. 3, p. 100109, Aug. 2024, doi: 10.1016/J.GLMEDI.2024.100109.
X. Xu et al., “A Comprehensive Review on Synergy of Multi-Modal Data and AI Technologies in Medical Diagnosis,” Bioengineering 2024, Vol. 11, Page 219, vol. 11, no. 3, p. 219, Feb. 2024, doi: 10.3390/BIOENGINEERING11030219.
F. Lopez-Jimenez et al., “Artificial Intelligence in Cardiology: Present and Future,” Mayo Clin Proc, vol. 95, no. 5, pp. 1015–1039, May 2020, doi: 10.1016/J.MAYOCP.2020.01.038,.
P. ; Pachiyannan et al., “A Novel Machine Learning-Based Prediction Method for Early Detection and Diagnosis of Congenital Heart Disease Using ECG Signal Processing,” Technologies 2024, Vol. 12, Page 4, vol. 12, no. 1, p. 4, Jan. 2024, doi: 10.3390/TECHNOLOGIES12010004.
P. N. Jone et al., “Artificial Intelligence in Congenital Heart Disease: Current State and Prospects,” JACC: Advances, vol. 1, no. 5, Dec. 2022, doi: 10.1016/J.JACADV.2022.100153,.
K. Khan, F. Ullah, I. Syed, and H. Ali, “Accurately assessing congenital heart disease using artificial intelligence,” PeerJ Comput Sci, vol. 10, pp. 1–43, 2024, doi: 10.7717/PEERJ-CS.2535,.
M. Cheng et al., “Development and Validation of a Deep-Learning Network for Detecting Congenital Heart Disease from Multi-View Multi-Modal Transthoracic Echocardiograms,” Research, vol. 7, p. 0319, Jan. 2024, doi: 10.34133/RESEARCH.0319.
D. B. Olawade, N. Aderinto, G. Olatunji, E. Kokori, A. C. David-Olawade, and M. Hadi, “Advancements and applications of Artificial Intelligence in cardiology: Current trends and future prospects,” Journal of Medicine, Surgery, and Public Health, vol. 3, p. 100109, Aug. 2024, doi: 10.1016/J.GLMEDI.2024.100109.
A. Bhattacharya et al., “Multi-modal fusion model for predicting adverse cardiovascular outcome post percutaneous coronary intervention,” Physiol Meas, vol. 43, no. 12, Dec. 2022, doi: 10.1088/1361-6579/AC9E8A.
“Multimodal Data Analysis and Fusion of Dynamic Physiological Signals and Electronic Health Records - Physiological Measurement - IOPscience.” Accessed: Jun. 04, 2025. [Online]. Available: https://iopscience.iop.org/journal/0967-3334/page/Multimodal-Data-Analysis-and-Fusion-of-Dynamic-Physiological-Signals-and-Electronic-Health-Records
X. Jacquemyn, S. Kutty, and C. Manlhiot, “The Lifelong Impact of Artificial Intelligence and Clinical Prediction Models on Patients With Tetralogy of Fallot,” CJC Pediatric and Congenital Heart Disease, vol. 2, no. 6Part A, p. 440, Dec. 2023, doi: 10.1016/J.CJCPC.2023.08.005.
R. Kabir et al., “Deep learning for clinical decision-making and improved healthcare outcome,” Deep Learning in Personalized Healthcare and Decision Support, pp. 187–201, Jan. 2023, doi: 10.1016/B978-0-443-19413-9.00004-7.
S. Thakur, V. K. Garg, and A. V. Kumar, “Role of artificial intelligence in the early detection of thrombocytopenia: An approach to improve health of pregnant women,” Proceedings - 2024 6th International Conference on Computational Intelligence and Communication Technologies, CCICT 2024, pp. 350–355, 2024, doi: 10.1109/CCICT62777.2024.00064.
P. Bizopoulos and D. Koutsouris, “Deep Learning in Cardiology,” IEEE Rev Biomed Eng, vol. 12, pp. 168–193, 2019, doi: 10.1109/RBME.2018.2885714,.
A. L. Goldberger et al., “PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals.,” Circulation, vol. 101, no. 23, 2000, doi: 10.1161/01.CIR.101.23.E215,.
S. Leclerc et al., “Deep Learning for Segmentation Using an Open Large-Scale Dataset in 2D Echocardiography,” IEEE Trans Med Imaging, vol. 38, no. 9, pp. 2198–2210, Sep. 2019, doi: 10.1109/TMI.2019.2900516.
D. Ouyang et al., “Video-based AI for beat-to-beat assessment of cardiac function,” Nature, vol. 580, no. 7802, pp. 252–256, Apr. 2020, doi: 10.1038/S41586-020-2145-8;TECHMETA=139,141;SUBJMETA=117,639,692,699,705,75;KWRD=CARDIOVASCULAR+DISEASES,COMPUTER+SCIENCE.
A. E. W. Johnson et al., “MIMIC-IV, a freely accessible electronic health record dataset,” Sci Data, vol. 10, no. 1, pp. 1–9, Dec. 2023, doi: 10.1038/S41597-022-01899-X;SUBJMETA=174,228,308,478,692,700;KWRD=EPIDEMIOLOGY,HEALTH+SERVICES,PUBLIC+HEALTH.
R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization,” Proceedings of the IEEE International Conference on Computer Vision, vol. 2017-October, pp. 618–626, Dec. 2017, doi: 10.1109/ICCV.2017.74.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2016-December, pp. 770–778, Dec. 2016, doi: 10.1109/CVPR.2016.90.
J. Lee et al., “BioBERT: a pre-trained biomedical language representation model for biomedical text mining,” Bioinformatics, vol. 36, no. 4, pp. 1234–1240, Feb. 2020, doi: 10.1093/BIOINFORMATICS/BTZ682.
Y. Lecun, L. Eon Bottou, Y. Bengio, and P. H. Abstract|, “Gradient-Based Learning Applied to Document Recognition”.
M. Ma, L. H. Sun, R. Chen, J. Zhu, and B. Zhao, “Artificial intelligence in fetal echocardiography: Recent advances and future prospects,” Int J Cardiol Heart Vasc, vol. 53, p. 101380, Aug. 2024, doi: 10.1016/J.IJCHA.2024.101380.
M. Raghu, C. Zhang, G. Brain, J. Kleinberg, and S. Bengio, “Transfusion: Understanding Transfer Learning for Medical Imaging”, doi: 10.5555/3454287.3454588.
K. R. Dufendach, A. Navarro-Sainz, and K. L. Webster, “Usability of human-computer interaction in neonatal care,” Semin Fetal Neonatal Med, vol. 27, no. 5, p. 101395, Oct. 2022, doi: 10.1016/J.SINY.2022.101395.
D. M. Leone, D. O’Sullivan, and K. Bravo-Jaimes, “Artificial Intelligence in Pediatric Electrocardiography: A Comprehensive Review,” Children, vol. 12, no. 1, Jan. 2025, doi: 10.3390/CHILDREN12010025,.
X. Jacquemyn, S. Kutty, and C. Manlhiot, “The Lifelong Impact of Artificial Intelligence and Clinical Prediction Models on Patients With Tetralogy of Fallot,” CJC Pediatric and Congenital Heart Disease, vol. 2, no. 6, pp. 440–452, Dec. 2023, doi: 10.1016/J.CJCPC.2023.08.005.
F. Luna-Perejón et al., “Reviewing Multimodal Machine Learning and Its Use in Cardiovascular Diseases Detection,” Electronics 2023, Vol. 12, Page 1558, vol. 12, no. 7, p. 1558, Mar. 2023, doi: 10.3390/ELECTRONICS12071558.
G. Sunil Kumar and P. Kumaresan, “Deep Learning and Transfer Learning in Cardiology: A Review of Cardiovascular Disease Prediction Models,” IEEE Access, 2024, doi: 10.1109/ACCESS.2024.3514093.
X. Liu et al., “Applications of artificial intelligence-powered prenatal diagnosis for congenital heart disease,” Front Cardiovasc Med, vol. 11, 2024, doi: 10.3389/FCVM.2024.1345761,.
S. Raj and N. Bayappu, “Multimodal Deep Learning in Medical Diagnostics: A Comprehensive Exploration of Cardiovascular Risk Prediction,” Prediction in Medicine: The Impact of Machine Learning on Healthcare, pp. 78–94, Oct. 2024, doi: 10.2174/9789815305128124010008.
M. Cheng et al., “Development and Validation of a Deep-Learning Network for Detecting Congenital Heart Disease from Multi-View Multi-Modal Transthoracic Echocardiograms,” Research, vol. 7, Jan. 2024, doi: 10.34133/RESEARCH.0319,
DOI: https://doi.org/10.33387/ijeeic.v2i2.10059
Refbacks
- Saat ini tidak ada refbacks.
##submission.license.cc.by-nc-sa4.footer##