Analisis keterampilan metakognisi mahasiswa dalam menyelesaikan soal persamaan diferensial
Sari
Penelitian ini merupakan penelitian deskriptif kualitatif bertujuan untuk menganalisis keterampilan metakognisi dalam menyelesaikan soal persamaan diferensial. Keterampilan metakognisi mahasiswa dalam penelitian ini adalah kegiatan yang dilakukan seseorang yang berkaitan dengan kesadaran dan pengaturan kognisinya dalam memecahkan masalah meliputi perencanaan, monitoring, dan evaluasi. Subjek penelitian ada 2 mahasiswa yakni 1 mahasiswa kemampuan dasar matematika tinggi (MT) dan 1 mahasiswa kemampuan dasar matematika sedang (MS). Instrument penelitian ini adalah instrument utama (peneliti sendiri) dan instrumen bantu yaitu soal tes tentang persamaan diferensial serta pedoman wawancara. Proses pengumpulan data dilakukan dengan cara memberikan soal persamaan diferensial kepada kedua subjek dan melakukan wawancara pada saat subjek mengejakan soal. Proses analisis data yakni reduksi data, penyajian data, serta penarikan kesimpulan. Hasil penelitian menunjukkan bahwa MT melibatkan semua indikator keterampilan metakognisi dalam menyelesaikan soal persamaan diferensial yaitu indikator perencanaan, monitoring dan evaluasi. Sedangkan MS hanya melibatkan satu indikator keterampilan metakognisi dalam menyelesaiakan soal persamaan diferensial yaitu indikator perencanaan. Kesimpulannya dalam menyelesaikan masalah persamaan diferensial Subjek MT melibatkan keseluruhan indikator keterampilan metakognisi sedangkan  MS hanya satu indikator keterampilan metakognisi.Â
Kata kunci : Persamaan diferensial, keterampilan metakognisi
Teks Lengkap:
PDFReferensi
Boyce, W. E., & DiPrima, R. C. (2017). Elementary differential equations and boundary value problems. John Wiley & Sons.
Donker, A. S., de Boer, H., Kostons, D., van Ewijk, C. D., & van der Werf, M. P. (2014). Effectiveness of learning strategy instruction on academic performance: A meta-analysis. Educational Research Review, 11, 1-26.
Flavel, J. H. (1979). Metacognition and cognitive monitoring a new area of cognitive-developmental inquiry. American Psychologist, 34, 906-911.
GarcÃa, T., RodrÃguez, C., Betts, L., & Areces, D. (2020). Predicting academic achievement in mathematical word problem solving. International Journal of STEM Education, 7(1), 1-14.
Kapa, E. (2020). Metacognitive support in solving mathematical problems—how students differ in responding to cues. Instructional Science, 48(5), 519-549.
Kramarski, B., & Revach, T. (2018). The effects of a meta-cognitive intervention on pre-service teachers: A quasi-experimental study. Teaching and Teacher Education, 72, 36-48.
Pintrich, P. R. (2017). The role of metacognitive knowledge in learning, teaching, and assessing. Theory into Practice, 41(4), 219-225.
Sari, R. A., Wibowo, I., & Hadi, S. (2019). The effect of metacognitive strategy on students' mathematical problem solving and metacognitive awareness. Journal of Physics: Conference Series, 1157, 032110.
Schraw, G., & Dennison, R. S. (2014). Assessing metacognitive awareness. Contemporary Educational Psychology, 19(4), 460-475.
Schraw, G., Crippen, K. J., & Hartley, K. (2018). Promoting self-regulation in science education: Metacognition as part of a broader perspective on learning. Research in Science Education, 36(1), 111-139.
Susanti, S. (2018). Enhancing students’ critical thinking skills through metacognitive strategies in mathematics learning. Journal of Educational Science and Technology, 4(2), 142-150.
Swanson, H. L. (2017). Cognitive processes that underlie mathematical precociousness. Learning and Individual Differences, 59, 1-10.
Swanson, H. L. (2019). The role of working memory and metacognition in the development of mathematical skills in elementary school children. Journal of Educational Psychology, 111(2), 262-277.
Taasoobshirazi, G., & Farley, A. P. (2019). The role of metacognitive skills in developing mathematical problem solving. International Journal of Science and Mathematics Education, 17(6), 1137-1156.
Thomas, G. P., & Mee, J. A. (2020). Metacognition in college teaching and learning. New Directions for Teaching and Learning, 2020(161), 39-50.
Veenman, M. V. J., Van Hout-Wolters, B. H. A. M., & Afflerbach, P. (2015). Metacognition and learning: Conceptual and methodological considerations. Metacognition and Learning, 10(3), 249-265.
Wahyudi, A. (2017). Improving students' mathematical critical thinking ability through problem-based learning. Journal of Physics: Conference Series, 895, 012081.
Wahyudi, D., Anggo, M., & Misu, L. (2021). Analisis Keterampilan Matekognisi dalam Menyelesaikan Koneksi Matematik Materi Trigonometri di Tinjau dari Self-Efficacy Siswa Kelas XI SMAN 4 Kendari (Analysis Of Matecognitional Skills In Completing Mathematic Connections Of Trigonometry In Review Of Self-Efficacy Of Class XI Students Of SMAN 4 Kendari). In Jurnal Pembelajaran Berpikir Matematika 4(1).
Zimmerman, B. J. (2017). Motivational sources and outcomes of self-regulated learning and performance. In D. H. Schunk & J. A. Greene (Eds.), Handbook of self-regulation of learning and performance (2nd ed., pp. 51-64). Routledge.
DOI: https://doi.org/10.33387/dpi.v13i1.8394
Refbacks
- Saat ini tidak ada refbacks.
Â
Delta-Pi: Jurnal Matematika dan Pendidikan Matematika © 2024 is licensed under CC BY 4.0